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Side-wall boundary layers in rotating axial flow 

By L. G. REDEKOPP 
Department of Aerospace Engineering, University of Southern California, 

L O 5  h g e l e s  

(Received 25 February 1972) 

The boundary layers forming on the walls of an aligned cylinder in a rotating 
fluid in axial motion are studied theoretically. The analysis shows that the side- 
wall boundary layer is of the Blasius type when the Rossby number exceeds the 
inverse square root of the Reynolds number and is transformed to the Stewartson 
+-layer when the Rossby number is less than this value. A second thicker 
boundary layer is superimposed on the *-layer whenever the difference between 
the azimuthal velocities of the ambient fluid and the boundary exceeds the axial 
velocity. Its thickness varies according to the relative magnitudes of these 
velocities and yields the Stewartson &layer thickness only when the ratio of the 
azimuthal velocity difference to the axial velocity is of order EA, where E is the 
Ekman number. A uniformly valid solution is obtained for the first case when 
the boundary layer is of the Blasius type. 

1. Introduction 
Boundary or shear layers in the vicinity of discontinuity surfaces which are 

parallel to the axis in contained rotating flows are known to have a sandwich 
structure, which was fist derived analytically by Stewartson (1957) and shown 
to exist experimentally by Baker (1  967). They consist of an outer layer of thick- 
ness Ea and an inner layer of thickness E), where E is the Eckman number based 
on the length of the layer. These characteristic scales are determined theoretically 
by the fact that, in a rotating cylinder, for example, the side-wall layers must 
match the Eckman layers on the end walls. They are, therefore, intimately 
dependent on the existence of an Ekman layer which induces at most an axial 
velocity of order Ei. On the other hand, if axial motions which are much larger 
than any rotational velocity are imposed on a rotating fluid, one would expect 
to find a Blasius type of layer in place of the double or, depending on the boundary 
conditions, single-layer structure found by Stewartson. The following question 
then arises. What is the correct boundary-layer structure for prescribed values 
of the axial and angular velocities and what intermediate structures, if any, 
appear in the transition from the Blasius layer to the Stewartson layers? This 
problem, which arose initially from a desire to construct a continuous-axial-flow 
rotating water tunnel, is investigated analytically using a careful scaling analysis 
and the techniques of singular perturbation methods. 
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FIGURE 1. A schematic diagram of the flow model. 

2. Formulation 
We consider the uniform axial flow of an incompressible rotating fluid through 

a slice of a thin-walled hollow cylinder of radius i, and length L whose axis 
coincides with the axis of rotation. The cylinder is taken to be fixed axially, but 
rotates about its axis at an angular speed different from that of the ambient 
fluid. The radius of the fluid container is assumed to be much larger than that of 
the hollow cylinder. We denote the axial velocity of the fluid by U,, its angular 
velocity by a,, and the angular velocity of the cylinder by 51, + A51 (see figure 1). 
The dimensionless equations of motion for the fluid, written with respect to 
a cylindrical polar co-ordinate system rotating with speed SZ, and assuming axial 

(2.1) 
symmetry, are 

ux + w, + w/r = 0, 

UU,+WU, = - p X + ( I / R ) V 2 ~ ,  ( 2 . 2 )  

and 

where 

vw 2 
uv,+wvr+-+-w = 

r Ro R 

( v2 2 
r Ro R 

uw,+wwT----v = -pr+- v -- 

(2.5) 

All velocities have been scaled with U, and all lengths with L. The azimuthal 
velocity is purposely not scaled with the relative azimuthal velocity so that the 



Side-wall boundary layers in rotating axial Jlow 567 

limiting case of vanishing AQ can be discussed without difficulty. The two para- 
meters appearing are the Reynolds number (R = UoL/v) and the Rossby number 
(Ro = Uo/QoL). Defining a stream function $ by 

and introducing the co-ordinate transformation 

r = ro + y ,  ro = Fo/L, 
so that y measures distance radially from the surface of the cylinder, the equa- 
tions of motion reduce to the coupled set 

where (2.10) 

(2.11) 

Equations (2.8) and (2.9) are the azimuthal components of the vorticity and 
momentum equations, respectively, and are written so that the right-hand sides 
contain all terms accounting for the transverse curvature of the cylinder. They 
are an exact coupled set of equations and any true boundary-layer scaling must 
be consistent with both of them simultaneously. 

The boundary conditions for the problem are the no-slip conditions on the 
hollow cylinder surface, 

(2.12a) 

and similar conditions on the surface of the fluid container. However, if the 
diameter of the containing side walls is much larger than the diameter of the 
hollow cylinder and also larger than the length of the hollow cylinder, the 
container can be assumed to be infinitely large as far as the boundary layer on 
the cylinder is concerned. In  what follows, these conditions are assumed to be 
satisfied, so that the boundary conditions on the outer fluid container are 

(2.12b) 
replaced by 

The ratio of the difference between the azimuthal velocities of the hollow 
cylinder and the ambient fluid to the imposed axial velocity, which appears in 
the second of (2.12a), plays an important role in the analysis and will sub- 

(2.13) 
sequently be denoted by 6 = PolAOl/U,,. 

$(x, 0) = $&, 0) = 0, u(x, 0) = ($0 lAQl/Ul) sgn AQ, 

lim $(x, y )  = &(ro+y) ,  lim w(x, y) = 0. 
u+m v+ 
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3. Boundary-layer scaling and equations 
The flow behaviour in the immediate vicinity of the cylinder is investigated 

assuming that the influence of viscosity is limited to radially narrow regions. 
The conditions for the validity of this assumption are to be determined in the 
course of the analysis. The (boundary-layer) assumption is made explicit by the 
transformations 5 = y/e (. < 11, (3.1) 

@(-(2, Y) = eT(-(2, 5)  (3.2) 

and V(X,Y) = a w ,  5),  (3.3) 

where e and are undetermined functions of the parameters R, Ro and 6. The 
stream function transformation is dictated by matching requirements for the 
axial velocity, and the transformation of the azimuthal velocity is required to 
maintain the proper scaling in the momentum equation (2.9) and the boundary 
condition (2.12a). The parameter e is determined by requiring the coefficient of 
the largest viscous term in the vorticity equation (2.8) to be unity and all other 
terms to be of order unity or smaller. 

The transformed vorticity and momentum equations are 

1 2m 
Ro L(x,C;Y)-- -+- e 2 - + -  Y+---v,= 0 (3.4) e2R (e2::2 :L2)] ( ::2 :;2) 

and 

The transverse curvature terms belonging on the right-hand sides of these 
equations are of order E/rO or smaller and hence can be neglected to first order 
when the boundary-layer thickness is small compared with the cylinder radius. 
Their effect in the non-rotating case is reviewed by Van Dyke (1969). In  what 
follows we shall take the ratio €/yo to be small and neglect terms of that order in 
the boundary layer. Furthermore, the analysis is for the boundary layer forming 
on the outer surface of the cylinder (y > 0 )  only. The boundary layer on the inner 
surface will differ only to order e/ro. 

The transformed boundary conditions are, then, 

Y(x,O) = Y s ( X , O )  = 0 (0  6 5 < I) ,  (3 .6a)  

U,(x,Oo) = 1, V(x,Oo) = 0, ( 3 . 6 b )  

and V ( x ,  0) = S/osgnAQ (0 < .x < 1). ( 3 . 6 ~ )  

The scaling analysis which follows is presented in two sections for the cases 
8 2  I respectively. This division arises naturally as the nonlinear terms in the 
vorticity and momentum equations are always of smaller order of magnitude 
than the Coriolis terms and the flow is rotation-dominated when 6 exceeds unity. 



Xide-wall boundary layers in rotating axial flow 569 

3.1. Boundary-layer analysis for 6 < 1 

Two boundary-layer balances are possible for the vorticity equation (3.4) 
depending on the relative magnitudes of the various parameters. When advection 
and diffusion of' vorticity form the primary vorticity balance, E has the familiar 
form 

E = R-*, 
with the further requirement that 

(3-7)  

ecr/Ro < 1. (3.8) 

Once cr is known, (3.8) defines the range for which this balance is applicable. The 
scaling parameter cr can be determined by examining the momentum equation 
(3.5) and the boundary Condition ( 3 . 6 ~ ) .  Since the introduction of cr makes the 
transformed azimuthal velocity V ( x ,  g) of order one, the boundary condition 
requires 

However, when 6 vanishes (i.e. no differential rotation between the cylinder and 
the ambient fluid), relative azimuthal motion must arise solely from the action 
of the Coriolis force through the coupling of the vorticity and momentum 
equations. The Coriolis and viscous terms in the momentum equation must then 
balance, leading to the condition 

(3.9) 0.3 crl = 6. 

c = g2 = E/RO = lIROR*. (3.10) 

Therefore, cr = crz when the azimuthal velocity driven by the Coriolis force in 
the axial-flow boundary layer exceeds the azimuthal motion forced by the 
boundary condition (i.e. when 0 6 6 < (RoR*)-l) and cr = crl when the opposite 
occurs (i.e. when (RoR*)-I < 6 < 1).  Returning to the requirement given in (3.8) 
we see that the advection-diffusion vorticity balance is characteristic of the 
side-wall boundary layer whenever 

RO > E = R-+. (3.11) 

If Ro < R-4 the characteristic balance must be that of the Coriolis and viscous 
terms or the entire flow is viscous-dominated. 

Expanding the dependent variables in a perturbation sequence of the form 

$(.,y) = EY(x,C) = E[Y(')(x,~)+~(R,Ro,~)Y(~)(~,~)+ ...I ( 3 . 1 2 ~ )  

and V ( X , Y )  = a V ( ~ , c )  = g[V(l)(~,c)+$(R,  R o , ~ )  V@)(X,<)+...], (3.12b) 

and substituting into (3.4) and (3.5) yields the first-order boundary-layer 
equations. The stream function Y(1) satisfies the Blasius boundary-layer equation 
(cf. Rosenhead 1963, p. 222), and the azimuthal velocity satisfies the 
equations 

(3.13) 

when (RoR*)-1 < 6 < 1 and satisfies the equation 

[L(x, y; W)) - az/ac2] V(l) = 0, V1)(x, 0) = sgn AQ, 

( 3 . 1 4 ~ )  
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when 0 6 S < (RoRi)-l with the wall boundary condition 

sgn AQ, 6 = (RoRB)-1. 
Vl)(x, 0 )  = (3.14h) 

The solutions of these equations are presented later. 
The above equations describe the first-order boundary-layer flow whenever 

Ro > R-4. If Ro < R-4, the Coriolis term in the vorticity equation (3.4) dominates 
the advective terms, and the primary boundary-layer balance is between the 
vorticity generated by Coriolis forces and that diffused by viscosity. The scaling 

(3.15) 
parameter E then becomes 

= (RolgR)), 

Rolos < I .  (3.16) 
with the requirement 

Following a procedure identical with that above reveals that the parameter is 
unity so long as 6 6 1. Thus we arrive a t  the familiar boundary-layer scaling 

E = = ( R o ~ R ) ~  = E), (3.17) 

where E is the Ekman number (E = v/Q0L2). If the expansions (3.12) are intro- 
duced, the first-order boundary-layer equations become precisely the Stewartson 
&-layer equations (cf. Greenspan 1968, p. 103): 

a4Y(1)/8<4 - 2 vg) = 0 ( 3 . 1 8 ~ )  

and v$ + 2YZ) = 0. (3.18 b)  

The azimuthal velocity satisfies the boundary condition 

V(l)(x,O) = SsgnAQ (0 6 x < 1) .  (3.19) 

Equations (3.18) are of sufficiently high order to satisfy all the requisite boundary 
conditions. The fact that V(l)(x, 0)  may be smaller than unity does not imply that 
v(1) is small everywhere and is not properly scaled. Within the boundary layer 
v(1) is of order unity because of the Coriolis force coupling of the vorticity and 
momentum equations. Thus, although the governing equations are identical to 
the familiar E%-layer equations, the dynamics is quite different in that the axial- 
flow boundary layer induces an order-one (on this scale) azimuthal flow inde- 
pendent of the boundary conditions. The compatibility requirement (3.16) 
reveals that this single boundary layer is applicable whenever Ro < E.5 (or 
equivalently Ro < R-4) and 6 < I (i.e. when the axial velocity is equal to or 
exceeds the difference in swirl velocities between the cylinder and the ambient 
fluid). When S exceeds unity, a double-boundary-layer structure is required with 
the thinnest layer maintaining the E.5 scale. 

Before discussing the case 6 > 1 we note that equations ( 3 . 1 8 ~ ~  b )  can be 
combined to yield a sixth-order parabolic equation for V(l) or Y(l) alone, each of 
which is invariant with respect to a reflexion of the x axis. The boundary layer is 
then blocked in the sense that an upstream wake appears. The parameter condi- 
tJion Ro 0(R-4) specifying the onset of blocking can be written in the form 

(3.20) 
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where 6, is the displacement thickness of the Blasius boundary layer. This is 
identical to the criterion derived by Kelly & Redekopp (1970) for the blocking 
of a stratified boundary layer on a horizontal surface if Qo is replaced by the 
BruntJaisala frequency N .  Equation (3.20) implies that upstream influence 
occurs when the Rossby number based on the characteristic lateral dimension of 
an obstacle is of order one or smaller. This can be compared with the condition 
of Uo/Qoa = 0-77 for the appearance of an upstream ‘vortex bubble’ reported 
by Orloff and Bossell (see Orloff 1971) in their experimental study of the axial 
flow of a rotating fluid over a transverse disk of radius a. Their result is obtained, 
however, from a linear extrapolation of their measured ‘bubble’ length as a 
function of the Rossby number. Maxworthy (1970) suggests that there is an 
upstream disturbance for any finite Rossby number, but it is not certain that this 
upstream influence differs significantly from that experienced by a potential flow 
when the Rossby number is greater than unity. Miles (1972) has shown theoreti- 
cally that upstream separation occurs a t  a Rossby number of 1.05 in the inviscid 
flow of a rotating fluid over a disk. In  the present case, the blocking condition is 
derived on the basis of a viscous analysis, but one can argue that the principal 
effect of viscosity, as far as blocking is concerned, is to give rise to a characteristic 
ateral dimension of the body. 

3.2. Boundury-layer analysis for 6 > 1 

When 6 is much larger than unity, the azimuthal velocity boundary condition 
(3.6) dictates the choice CT = 8. However, a Coriolis-viscous balance in both the 
vorticity and momentum equations can no longer hold simultaneously when 
CT = 6. This is readily illustrated by noting that a Coriolis-viscous balance in the 
vorticity equation requires 

E = (Ro/vR)*, RO/CTE < 1, (3.21) 

while a similar balance in the momentum equation yields 

6 = (gRo/R)*, CTRO~S < 1. (3.22) 

These two expressions for E, and also the corresponding compatibility relations, 
are satisfied simultaneously only when r~ = 1, E = el = E* and Bo < E*. Clearly 
the boundary condition on the swirl velocity (which is of O(6) > 1) cannot be 
satisfied directly. The only alternative is to allow for a double structure in which 
a distinguished limiting set of equations describing motion in one layer yields 
solutions satisfying the azimuthal velocity conditions and another distinguished 
limiting set governing the motion in the other layer permits solutions satisfying 
the stream function conditions. Further, we insist that the solutions for the 
individual layers match uniformly in an overlap region, yielding a consistent 
dynamic description of the flow. This procedure yields the well-known E* - E$ 
sandwich boundary-layer structure as in contained rotating flows where the axial 
motion is due to Ekman-layer suction or blowing. 

The only consistent boundary-layer scaling for which the stream function 
boundary conditions (i.e. for the axial and radial velocities) can be satisfied is 
that with e = E* and CT = 1 as derived above. Therefore, the E*-layer must 
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appear whenever Ro < E )  (or, equivalently, Ro < R d ) ,  irrespective of the 
magnitude of 6, but it automatically allows for the satisfaction of the no-slip 
boundary condition on the azimuthal velocity only when S < O(1). When 
6 exceeds unity an additional layer for which CT = 6 and some of the boundary 
conditions on the stream function are relaxed is necessary. It is clear from (3.22) 
and from using the condition CT = S > 1 that the thickness of the second layer 
(e2, say) will be greater than el. 

A description of the 00w in the outer layer can be derived in a straightforward 
manner by use of the transformations 

$(x, Y) = P Y Z ( X ,  C2L v(x,  Y) = S U X ,  C Z ) ?  c z  = Y b 2 .  (3.23) 

In  contrast to (3.2)) the stream function ordering is left arbitrary since the 
boundary conditions on $must be relaxed. The scaling parameter pis determined 
subsequently by properly matching the velocities between the inner €,-layer and 
the outer €,-layer. Introducing the above transformations into the vorticity and 
momentum equations and neglecting transverse curvature terms yields, 
respectively, 

and 

A Coriolis-viscous balance in the latter equation is necessary in order that the 
boundary conditions for V, can be satisfied. Thus, 

SRO/S;~R = 1 (3.26) 

and, if p is known, e2 is determined. Now two ways of matching are possible for 
the determination ofp: one in which the axial velocities match between the two 
boundary layers and the other in which the radial velocities match. The latter 
choice is the only one leading to a consistent perturbation problem. Hence, we 
must choose /3 = = E), (3.27) 

whereby the value for cz becomes 

E2 = (E#-n)t. (3.28) 

In  writing the above relation, we have replaced 6 by n using the definition 

6 = E-". (3.29) 

Note that when n = 0 (i.e. 6 = 1) the outer layer reduces to thickness E* and 
as such is wholly contained within the el layer. For 6 > 1, the definition (3.29) 
implies that n > 0, while (3.28) reveals that e2 = 1 and the entire flow is viscous 
if n 
6 lies in the range 

3. Thus, a double-boundary-layer structure always appears whenever 

(3.30) 1 < 6 < E-3. 

The first-order equations describing the motion in the ez layer are 

vg = 0 (3.31) 
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and (3.32) 

These equations are a weak form of the Taylor-Proudman theorem in that they 
require the azimuthal and radial velocities to be independent of the streamwise 
distance x while the axial velocity can vary at most linearly with x .  They are 
identical to the Stewartson Ea-layer equations, but the boundary-layer scale is 
different. 

Returning to (3.28), we note that the foregoing boundary-layer scaling reduces 
to the Stewartson E f -  E) double structure when n = 8, that is, when the ratio 
of the axial velocity to the differential azimuthal velocity at  the boundary of the 
sliced cylinder is of order ES. By taking n = Q and computing the order of 
magnitude of the velocity components (when normalized with Po IAQ] rather 
than Uo), it is a straightforward calculation to show that (u,v,w) are of order 
(Ei, 1, E3) in the €,-layer and are of order (E&, ES, Ea) in the €,-layer (el = Et). 
These are precisely the scalings of the velocity components for the E )  - Ei side- 
wall boundary-layer structure compatible with Ekman layers at the ends 
(Greenspan 1968). The preceding scaling analysis shows that the Ei-layer exists 
with the same dynamic equations whenever Ro < EB, irrespective of the value 
of 6, and that an additional outer layer, similar dynamically to the Et-layer, 
exists whenever Ro < E i  and 1 < 6 < E-5, its thickness being a function of 6 
and given by E%S&. 

4. A uniformly valid solution for Ro > R-4 
Similarity solutions are possible for the parameter range for which the advec- 

tive and viscous diffusion terms comprise the primary vorticity balance in the 
boundary layer (i.e. when Ro > R-t). The stream function Ytl) has the form 

T(1)(%5) = .Y(7)> 7 = c/& (4.1) 

(4.2) 

where f satisfies the familiar Blasius equation. Asymptotically, the behaviour 
off is given by 

where 6, is the displacement constant and equals 1.72. Equation (3.13) for the 
azimuthal velocity, applicable when (RoR*)-l < 6 < 1, has a similarity solution 
given by the Pohlhausen equation (cf. Schlichting 1968, p. 280): 

f 7-49 

w x ,  I I )  = g(7L 

g" + ifs' = 0, g(0) = sgn An, g(m) = 0. (4.3) 

The solution of (3.14), applicable when 0 < 6 < (RoR*)-l, is more complicated. 
It has the similarity form 

w,, 5 )  = Gl(7)  +.~G,(7), (4.4) 

where (4.5) 
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FIGURE 2. The axial and azimuthal boundary-layer profiles for Ro > R-8 

(f”(0) = 0.332, g’(0) = - 0.332 sgn AQ, GL(0) = - 1.086). 

The function G,(r) is determined by 

(4-6) 

That the boundary condition G2(00) cannot be zero is readily seen by looking a t  
the asymptotic solution for G,. The functions f, g and G, are plotted in figure 2, 
from which the axial and azimuthal velocity components in the boundary-layer 
region can be computed. 

The above solutions are not uniformly valid since the radial velocity and the 
azimuthal velocity from (4.6) are not zero outside the boundary layer. To correct 
this, another distinguished limit of the equations must be found and must yield 
solutions which match the boundary-layer variables and V(Q and also satisfy 
the condition of uniform axial motion and zero swirl as T+W. The correct limit 
can be shown to consist of a balance of the advective and Coriolis terms in both 
the vorticity and momentum equations. 

In  order to simplify the mathematical features of the matching and to empha- 
size the structure of the outer flow, curvature effects will be neglected (ro 9 1). 
The solution to the momentum equation (2.8) is then 

since viscous effects are of higher order. The correct outer expansions are 

Gi + *j’GL - if ’G, = - (f- ~f’), 
G,(O) = 0, G~(co) = -281. 

+, Y) = ( 2 1 W  ($@> Y) - Y), (4.7) 

@(x,y) = Y + y ( R , R o ) p +  ... (4.8a) 
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(4.8 b )  
1 

and v ( x , ~ )  = ~ [ o + y ( R , R o ) ~ ( ~ ) +  ...I, 

The substitution Ro = Re has been made for convenience. Recalling that the 
foregoing boundary-layer solutions are applicable for Ro > R-3, we obtain 
c > - +. The matching of the stream function requires 

y(R, Ro) $'"(x, 0) = - E 6,~&, (4.10) 

whereby y = e = R-3. The matching requirement on the azimuthal velocity 
from (4.4) and (4.6) is automatically satisfied and the problem for @l) is well 
posed when c > 0 (i.e. Ro > O(1)) .  However, when 

-+ < c < 0 (R-3 < Ro < O(1)) 

the equation for $(l) becomes, in the limit of large Reynolds number, 

a p p x  = 0, (4.11) 

which clearly does not admit a solution satisfying the matching condition (4.10). 
The same problem was encountered by Kelly & Redekopp (1970) in their study 

of the boundary layer on a flat plate in a stratified flow. They showed that the 
correct description of the flow could be obtained by introducing an intermediate 
layer in which both independent variabIes are rescaled. With the rescaled vari- 
ables denoted by 2 and 9, the flow in the intermediate layer (valid for - + < c < 0) 

(4.12 a) is represented by 

(4.12 b )  

(4.12 c) 

(2, 9) = (5, Y)/RC> 
$(z, y )  = Rc[Q + Rd(l+c)@(l)(O, 9) + . . .] 
w(5, y )  = R - w m ( O ,  9) + . . . , and 

with the governing equations 

and matching condition 
(9; + 4) 9 = 0, = 2@(1) 

3'"(8,0) = -6,x&. 

( 4 . 1 3 ~ ~ )  

(4.13b) 

The swirl velocity is again properly matched, showing that it decays to zero in 
an outer inviscid layer. The solutions for $(l) and are discussed in Kelly & 
Redekopp (1970, $6) .  The scaling ( 4 . 1 2 ~ )  for the independent variables is 
equivalent to non-dimensionalizing the co-ordinate lengths with the wavelength 
Uo/sZo of inertial waves moving with phase velocity U, and oscillating a t  the 
natural frequency Qo. 

5. Summary 
The foregoing analysis has shown how the boundary-layer structure changes 

from the Blasius type to the Stewartson type as the axial velocity varies in 
relation to azimuthal velocities in a rotating fluid. No other distinct viscous 
boundary layers appear as the flow changes from one type to the other except 
that the thickness of the familiar &-layer varies according to the relative magni- 
tudes of these velocities. The boundary-layer flow is found to exhibit upstream 
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I 
Ro 

6 =b% 

Siuglc viscous boundary layer 

c -1;3 

c2= E: 6’ 
1- 

Double viscous 
boundary layer 

I 
Coriolis-viscous balance 

FIGURE 3. A representation of the important transition regions in 
(Ro,  S) parameter space. 

influence whenever Ro 2 O(R*) or, equivalently, Ro 2 O(E*). The flow structure 
is summarized graphically in figure 3 in terms of the three parameters Ro, R 
(or E )  and 8. 
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